Disentanglement and generalization under correlation shifts

Abstract

Correlations between factors of variation are prevalent in real-world data. Exploiting such correlations may increase predictive performance on noisy data; however, often correlations are not robust (eg, they may change between domains, datasets, or applications) and models that exploit them do not generalize when correlations shift. Disentanglement methods aim to learn representations which capture different factors of variation in latent subspaces. A common approach involves minimizing the mutual information between latent subspaces, such that each encodes a single underlying attribute. However, this fails when attributes are correlated. We solve this problem by enforcing independence between subspaces conditioned on the available attributes, which allows us to remove only dependencies that are not due to the correlation structure present in the training data. We achieve this via an adversarial approach to minimize the conditional mutual information (CMI) between subspaces with respect to categorical variables. We first show theoretically that CMI minimization is a good objective for robust disentanglement on linear problems. We then apply our method on real-world datasets based on MNIST and CelebA, and show that it yields models that are disentangled and robust under correlation shift, including in weakly supervised settings.

Matthias Kümmerer
Matthias Kümmerer
Postdoc

My research interests include eye movements, saliency prediction, benchmarking, representation learning and statistics.

Matthias Bethge
Matthias Bethge
Professor for Computational Neuroscience and Machine Learning & Director of the Tübingen AI Center

Matthias Bethge is Professor for Computational Neuroscience and Machine Learning at the University of Tübingen and director of the Tübingen AI Center, a joint center between Tübingen University and MPI for Intelligent Systems that is part of the German AI strategy.