State-of-the-art in human scanpath prediction

Abstract

The last years have seen a surge in models predicting the scanpaths of fixations made by humans when viewing images. However, the field is lacking a principled comparison of those models with respect to their predictive power. In the past, models have usually been evaluated based on comparing human scanpaths to scanpaths generated from the model. Here, instead we evaluate models based on how well they predict each fixation in a scanpath given the previous scanpath history. This makes model evaluation closely aligned with the biological processes thought to underly scanpath generation and allows to apply established saliency metrics like AUC and NSS in an intuitive and interpretable way. We evaluate many existing models of scanpath prediction on the datasets MIT1003, MIT300, CAT2000 train and CAT200 test, for the first time giving a detailed picture of the current state of the art of human scanpath prediction. We also show that the discussed method of model benchmarking allows for more detailed analyses leading to interesting insights about where and when models fail to predict human behaviour. The MIT/Tuebingen Saliency Benchmark will implement the evaluation of scanpath models as detailed here, allowing researchers to score their models on the established benchmark datasets MIT300 and CAT2000.

Matthias Kümmerer
Matthias Kümmerer
Postdoc

I’m interested in understanding how we use eye movements to gather information about our environment. This includes building saliency models and models of eye movement prediction such as my line of DeepGaze models. I also work on the question of how to evaluate model quality and benchmarking and I’m the main organizer of the MIT/Tuebingen Saliency Benchmark.

Matthias Bethge
Matthias Bethge
Professor for Computational Neuroscience and Machine Learning & Director of the Tübingen AI Center

Matthias Bethge is Professor for Computational Neuroscience and Machine Learning at the University of Tübingen and director of the Tübingen AI Center, a joint center between Tübingen University and MPI for Intelligent Systems that is part of the German AI strategy.