Comparing the ability of humans and DNNs to recognise closed contours in cluttered images

Abstract

Given the recent success of machine vision algorithms in solving complex visual inference tasks, it becomes increasingly challenging to find tasks for which machines are still outperformed by humans. We seek to identify such tasks and test them under controlled settings. Here we compare human and machine performance in one candidate task: discriminating closed and open contours. We generated contours using simple lines of varying length and angle, and minimised statistical regularities that could provide cues. It has been shown that DNNs trained for object recognition are very sensitive to texture cues (Gatys et al., 2015). We use this insight to maximize the difficulty of the task for the DNN by adding random natural images to the background. Humans performed a 2IFC task discriminating closed and open contours (100 ms presentation) with and without background images. We trained a readout network to …

Matthias Bethge
Matthias Bethge
Professor for Computational Neuroscience and Machine Learning & Director of the Tübingen AI Center

Matthias Bethge is Professor for Computational Neuroscience and Machine Learning at the University of Tübingen and director of the Tübingen AI Center, a joint center between Tübingen University and MPI for Intelligent Systems that is part of the German AI strategy.