Detecting distortions of peripherally presented letter stimuli under crowded conditions

Abstract

When visual features in the periphery are close together they become difficult to recognize: something is present but it is unclear what. This is called “crowding”. Here we investigated sensitivity to features in highly familiar shapes (letters) by applying spatial distortions. In Experiment 1, observers detected which of four peripherally presented (8 deg of retinal eccentricity) target letters was distorted (spatial 4AFC). The letters were presented either isolated or surrounded by four undistorted flanking letters, and distorted with one of two types of distortion at a range of distortion frequencies and amplitudes. The bandpass noise distortion (“BPN”) technique causes spatial distortions in Cartesian space, whereas radial frequency distortion (“RF”) causes shifts in polar coordinates. Detecting distortions in target letters was more difficult in the presence of flanking letters, consistent with the effect of crowding. The BPN …

Matthias Bethge
Matthias Bethge
Professor for Computational Neuroscience and Machine Learning & Director of the Tübingen AI Center

Matthias Bethge is Professor for Computational Neuroscience and Machine Learning at the University of Tübingen and director of the Tübingen AI Center, a joint center between Tübingen University and MPI for Intelligent Systems that is part of the German AI strategy.