Synthesising dynamic textures using convolutional neural networks
Christina M Funke,
Leon A Gatys,
Alexander S Ecker,
Matthias Bethge
February, 2017
Abstract
Here we present a parametric model for dynamic textures. The model is based on spatiotemporal summary statistics computed from the feature representations of a Convolutional Neural Network (CNN) trained on object recognition. We demonstrate how the model can be used to synthesise new samples of dynamic textures and to predict motion in simple movies.
Matthias Bethge
Professor for Computational Neuroscience and Machine Learning & Director of the Tübingen AI Center
Matthias Bethge is Professor for Computational Neuroscience and Machine Learning at the University of Tübingen and director of the Tübingen AI Center, a joint center between Tübingen University and MPI for Intelligent Systems that is part of the German AI strategy.