Deep gaze i: Boosting saliency prediction with feature maps trained on imagenet

Abstract

Recent results suggest that state-of-the-art saliency models perform far from optimal in predicting fixations. This lack in performance has been attributed to an inability to model the influence of high-level image features such as objects. Recent seminal advances in applying deep neural networks to tasks like object recognition suggests that they are able to capture this kind of structure. However, the enormous amount of training data necessary to train these networks makes them difficult to apply directly to saliency prediction. We present a novel way of reusing existing neural networks that have been pretrained on the task of object recognition in models of fixation prediction. Using the well-known network of Krizhevsky et al. (2012), we come up with a new saliency model that significantly outperforms all state-of-the-art models on the MIT Saliency Benchmark. We show that the structure of this network allows new insights in the psychophysics of fixation selection and potentially their neural implementation. To train our network, we build on recent work on the modeling of saliency as point processes.

Matthias Kümmerer
Matthias Kümmerer
Postdoc

I’m interested in understanding how we use eye movements to gather information about our environment. This includes building saliency models and models of eye movement prediction such as my line of DeepGaze models. I also work on the question of how to evaluate model quality and benchmarking and I’m the main organizer of the MIT/Tuebingen Saliency Benchmark.

Matthias Bethge
Matthias Bethge
Professor for Computational Neuroscience and Machine Learning & Director of the Tübingen AI Center

Matthias Bethge is Professor for Computational Neuroscience and Machine Learning at the University of Tübingen and director of the Tübingen AI Center, a joint center between Tübingen University and MPI for Intelligent Systems that is part of the German AI strategy.