Population code in mouse V1 facilitates readout of natural scenes through increased sparseness


Neural codes are believed to have adapted to the statistical properties of the natural environment. However, the principles that govern the organization of ensemble activity in the visual cortex during natural visual input are unknown. We recorded populations of up to 500 neurons in the mouse primary visual cortex and characterized the structure of their activity, comparing responses to natural movies with those to control stimuli. We found that higher order correlations in natural scenes induced a sparser code, in which information is encoded by reliable activation of a smaller set of neurons and can be read out more easily. This computationally advantageous encoding for natural scenes was state-dependent and apparent only in anesthetized and active awake animals, but not during quiet wakefulness. Our results argue for a functional benefit of sparsification that could be a general principle governing the structure …

Matthias Bethge
Matthias Bethge
Professor for Computational Neuroscience and Machine Learning & Director of the Tübingen AI Center

Matthias Bethge is Professor for Computational Neuroscience and Machine Learning at the University of Tübingen and director of the Tübingen AI Center, a joint center between Tübingen University and MPI for Intelligent Systems that is part of the German AI strategy.