Inferring decoding strategy from choice probabilities in the presence of noise correlations


The activity of cortical neurons in sensory areas covaries with perceptual decisions, a relationship often quantified by choice probabilities. While choice probabilities have been measured extensively, their interpretation has remained fraught with difficulty. Here, we derive the mathematical relationship between choice probabilities, read-out weights and noise correlations within the standard neural decision making model. Our solution allows us to prove and generalize earlier observations based on numerical simulations, and to derive novel predictions. Importantly, we show how the read-out weight profile, or decoding strategy, can be inferred from experimentally measurable quantities. Furthermore, we present a test to decide whether the decoding weights of individual neurons are optimal, even without knowing the underlying noise correlations. We confirm the practical feasibility of our approach using simulated …

Matthias Bethge
Matthias Bethge
Professor for Computational Neuroscience and Machine Learning & Director of the Tübingen AI Center

Matthias Bethge is Professor for Computational Neuroscience and Machine Learning at the University of Tübingen and director of the Tübingen AI Center, a joint center between Tübingen University and MPI for Intelligent Systems that is part of the German AI strategy.