Modern recording techniques such as multi-electrode arrays and 2-photon imaging are capable of simultaneously monitoring the activity of large neuronal ensembles at single cell resolution. This makes it possible to study the dynamics of neural populations of considerable size, and to gain insights into their computations and functional organization. The key challenge with multi-electrode recordings is their high-dimensional nature. Understanding this kind of data requires powerful statistical techniques for capturing the structure of the neural population responses and their relation with external stimuli or behavioral observations. Contributions to this Research Topic should advance statistical modeling of neural populations. Questions of particular interest include: 1. What classes of statistical methods are most useful for modeling population activity? 2. What are the main limitations of current approaches, and what can be done to overcome them? 3. How can statistical methods be used to empirically test existing models of (probabilistic) population coding? 4. What role can statistical methods play in formulating novel hypotheses about the principles of information processing in neural populations? This Research Topic is connected to a one day workshop at the Computational Neuroscience Meeting 2009 in Berlin (http://www. cnsorg. org/2009/workshops. shtml and http://www. kyb. tuebingen. mpg. de/bethge/workshops/cns2009/)