Relationship between decoding strategy, choice probabilities and neural correlations in perceptual decision-making task

Abstract

When monkeys make a perceptual decision about ambiguous visual stimuli, individual sensory neurons in MT and other areas have been shown to covary with the decision. This observation suggests that the response variability in those very neurons causes the animal to choose one over the other option. However, the fact that sensory neurons are correlated has greatly complicated attempts to link those covariances (and the associated choice probabilities) to a direct involvement of any particular neuron in a decision-making task. Here we report on an analytical treatment of choice probabilities in a population of correlated sensory neurons read out by a linear decoder. We present a closed-form solution that links choice probabilities, noise correlations and decoding weights for the case of fixed integration time. This allowed us to analytically prove and generalize a prior numerical finding about the choice probabilities being only due to the difference between the correlations within and between decision pools (Nienborg Cumming 2010) and derive simplified expressions for a range of interesting cases. We investigated the implications for plausible correlation structures like pool-based and limited-range correlations. We found that the relationship between choice probabilities and decoding weights is in general non-monotonic and highly sensitive to the underlying correlation structure. In fact, given empirical measures of the interneuronal correlations and CPs, our formulas allow to infer the individual neuronal decoding weights. We confirmed the feasibility of this approach using synthetic data. We then applied our analytical results to a published …