Decorrelated neuronal firing in cortical microcircuits


Correlated trial-to-trial variability in the activity of cortical neurons is thought to reflect the functional connectivity of the circuit. Many cortical areas are organized into functional columns, in which neurons are believed to be densely connected and to share common input. Numerous studies report a high degree of correlated variability between nearby cells. We developed chronically implanted multitetrode arrays offering unprecedented recording quality to reexamine this question in the primary visual cortex of awake macaques. We found that even nearby neurons with similar orientation tuning show virtually no correlated variability. Our findings suggest a refinement of current models of cortical microcircuit architecture and function: Either adjacent neurons share only a few percent of their inputs or, alternatively, their activity is actively decorrelated.

Matthias Bethge
Matthias Bethge
Professor for Computational Neuroscience and Machine Learning & Director of the Tübingen AI Center

Matthias Bethge is Professor for Computational Neuroscience and Machine Learning at the University of Tübingen and director of the Tübingen AI Center, a joint center between Tübingen University and MPI for Intelligent Systems that is part of the German AI strategy.