Simultaneously recorded neurons often exhibit correlations in their spiking activity. These correlations shape the statistical structure of the population activity, and can lead to substantial redundancy across neurons. Here, we study the effect of pairwise correlations on the population spike count statistics and redundancy in populations of threshold-neurons in which response-correlations arise from correlated Gaussian inputs. We investigate the scaling of the redundancy as the population size is increased, and compare the asymptotic redundancy in our models to the corresponding maximum-and minimum entropy models.